Spectroscopy of plasmas at FAIR
Friedrich-Schiller-Universität Jena
After the end of the funding period, the major international research facility FAIR (Facility for Antiproton and Ion Research) will start operating. The activities of the APPA research collaboration are one of the scientific pillars of the FAIR program and will mainly concentrate on the preparation of equipment for the experimental stations in the coming years. This project aims to develop and build the experimental equipment for the first plasma for physics experiments in the APPA cave. To be more precisely, measurement infrastructure in the field of laser and X-ray spectroscopy will be prepared. The proposed work matches the experiments described in the FAIR in Technical Design Report (TDR) "Diagnostic instrumentation for plasma physics experiments at the APPA cave". On the one hand it includes the construction of an intense laser source for applications in spectroscopy (pump-probe measurements), on the other hand the development of spectrometers in the VUV and X-ray range for use in the APPA-Cave, taking into account the specific conditions and challenges in experiments with intense relativistic ion beams. At the end of the funding period, we will have completed the first setups to conduct spectroscopy of heavy ion heated targets in the APPA-cave. The project is divided into two work packages (WP):
Work package 1 (Spielmann) Development of x-ray and XUV spectrometer for „day one“ plasma physics experiments at FAIR: The major goal is the design, development, realization and setup of spectroscopic devices as a diagnostic for the plasma generated in the APPA cave. The proposed work includes setting a grating spectrometer for the XUV and a crystal monochromator for the soft x-ray range to cover with both devices the spectral range from 1 to 100nm.
Work package 2 (Kaluza): High-performance front-end for Nd:glass based high energy laser system: for the diagnostic laser system to be installed at FAIR, we will develop the front-end, which will after careful characterization transferred to the APPA cave. The targeted parameters are 10 Hz repetition rate, 20mJ pulse energy, and a pulse duration in the range up to 10ns. The performance of the front-end will be crucial for the realization of the envisaged pump-probe measurements scheduled at FAIR.
Prof. Dr. Christian Spielmann
Institut für Optik und Quantenelektronik
Prof. Dr. Malte Kaluza
Institut für Optik und Quantenelektronik